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• Integrative QSAR models predict acute
contact toxicity and profile Mode of Ac-
tion.

• First harmonised Mode of Action classi-
fication scheme for honey bees

• Models were validated using robust in-
ternal and external parameters.

• Mode of Action for chemical grouping in
component-based mixture risk assess-
ment.

• K-NN algorithm improved the statistical
quality of the models and their
implementation.
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Honey bees (Apismellifera) provide key ecosystem services as pollinators bridging agriculture, the food chain and
ecological communities, thereby ensuring food production and security. Ecological risk assessment of single Plant
Protection Products (PPPs) requires an understanding of the exposure and toxicity. In silico tools such as QSAR
models can play a major role for the prediction of structural, physico-chemical and pharmacokinetic properties
of chemicals as well as toxicity of single and multiple chemicals. Here, the first integrative honey bee QSAR
model has been developed for PPPs using EFSA's OpenFoodTox, US-EPA ECOTOX and Pesticide Properties Data-
Base i) to predict acute contact toxicity (LD50) and ii) to profile theMode of Action (MoA) of pesticides active sub-
stances. Three different classification-based and four regression-based models were developed and tested for
their performance, thus identifying twomodels providing themost reliable predictions based on k-NN algorithm.
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Properties DataBase; PPP, plant protection products; QSAR, quantitative structure-activity relationship; RF, random forest; RA,
implified molecular input line entry system; TS, training set; VS, validation set; VSURF, variable selection (with) random forest.
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Honey bees
Mode of action
Ecological risk assessment
Chemical mixtures
The two-categoryQSARmodel (toxic/non-toxic; n=411)was validated using sensitivity (=0.93), specificity (=
0.85), balanced accuracy (=0.90), and Matthews correlation coefficient (MCC= 0.78) as statistical parameters.
The regression-based model (n=113) was validated for its reliability and robustness (R2 = 0.74; MAE= 0.52).
Current study proposes theMoAprofiling for 113 pesticides active substances and the first harmonisedMoA clas-
sification scheme for acute contact toxicity in honey bees, including LD50s data points from three different data-
bases. The classification allows to further defineMoAs and the target site of PPPs active substances, thus enabling
regulators and scientists to refine chemical grouping and toxicity extrapolations for single chemicals and
component-based mixture risk assessment of multiple chemicals. Relevant future perspectives are briefly ad-
dressed to integrate MoA, adverse outcome pathways (AOPs) and toxicokinetic information for the refinement
of single-chemical/combined toxicity predictions and risk estimates at different levels of biological organization
in the bee health context.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The importance of pesticides as plant protection products (PPPs) in
agriculture forestry, urban gardens, parks has been recognised world-
wide, particularly to protect crops against pests (e.g. insects, weeds),
diseases or pathogens (e.g. fungi), which may affect plants health and
potentially reduce crop yield, thus potentially threatening food security
(FAO, ITPS, 2017; Frische et al., 2018). However, concerns due to the po-
tential harmful effects of PPPs including insecticides on ecosystems, par-
ticularly towards non-target species such as pollinators, have raised
(Douglas et al., 2020; EFSA, 2018; Tosi and Nieh, 2019; Sanchez-Bayo
and Goka, 2016; Simon-Delso et al., 2015; Tosi et al., 2018).

Indeed, pollinators such as honey bees (Apis mellifera), bumble bees
(Bombus spp.) and solitary bees (e.g. Osmia spp.) play a key-role as eco-
systems service providers (ESP) contributing to the maintenance, re-
production of wild plant communities and biodiversity as well as
bridging agriculture, the food chain and the ecological communities,
thereby ensuring food production and security (Breeze et al., 2011;
Schulp et al., 2014; Rose et al., 2015). Honey bees also represent sentinel
species together with their hive products as bioindicators (i.e. honey,
pollen, beebread) to monitor environmental contamination by regu-
lated products (e.g. PPPs, veterinary residues), anthropogenic (e.g. per-
sistent organic pollutants, heavymetals, particulatematter) and natural
contaminants (mycotoxins, plant alkaloids) (Negri et al., 2015;
Bargańska et al., 2016; Tosi et al., 2018).

Moreover, honey bees are employedworldwide as surrogate species
for Apis and non-Apis bees to perform toxicity tests on single pesticides
(EFSA, 2013; USEPA, PMRA, CALDPR, 2014). In the EU, pesticide risk as-
sessment (RA) requires the settings of protection goals and the evalua-
tion of the environmental impact associated with the exposure and
toxicity of PPPs use (Regulation EC, 1107/2009, 2009). For honey bees,
the Regulation lays downs that “an active substance should only be ap-
proved if it results in negligible exposure or has no unacceptable acute or
chronic effects on colony survival and development, taking into account ef-
fects on honeybee larvae and honeybee behaviour”. In this context, the
European Food Safety Authority (EFSA) performs the RA of single active
substances based on toxicity data (e.g. LD50) provided with the pre-
market registration dossiers (e.g. Draft Assessment Report) submitted
by applicants (EFSA PPR Panel, 2012). Although there is growing evi-
dence that bees are exposed to awide range ofmultiple chemicals “mix-
tures” (David et al., 2016; Tosi et al., 2018; Prado et al., 2019) which, in
some instances, potentially trigger interactions such as synergistic ef-
fects (Carnesecchi et al., 2019a, 2019b; Spurgeon et al., 2016), further
work is needed to integrate information on such combined toxicity in
RA practice (Rortais et al., 2017; Bopp et al., 2019; Topping et al.,
2020). EFSA has recently published a MIXTOX guidance document to
support harmonised methodologies for ecological RA of combined ex-
posure to multiple chemicals while specifically illustrating the integra-
tion of information on combined toxicity for bees (More et al., 2019).
In this context, key recommendations include the need to further de-
velop and implement generic in silico models such as quantitative
structure–activity relationship (QSAR) to predict combined toxicity for
bees and a broader range of species of ecological relevance. These
models can support the integration of toxicity and mechanistic data
for hazard assessment of single chemicals as well as for component-
based approaches for mixture risk assessment (MRA). As a conse-
quence, innovative QSAR models to predict combined toxicity of pesti-
cides active substances in honey bees have been developed recently
allowing the identification of structural features that may drive an in-
crease or decrease in combined toxicity (Carnesecchi et al., 2020). In ad-
dition, authors have also highlighted that current data gaps regarding
information on themode of action (MoA) of single chemicals is still lim-
iting the development and broader applications of such innovative
QSAR models.

In the human-health and animal health areas, MoA refers to the
major steps leading to an adverse health effect following interaction
of the chemical with biological targets at the sub-cellular level, while
not necessarily implying the full understanding of the mechanism of
action at the molecular level (WHO, 2009; Boobis et al., 2006; OECD,
2017; EFSA PPR, 2013). Similarly, in ecological RA, MoA has been de-
fined as a functional change at the cellular level triggered by the sub-
stance entering the organismwhich then involves levels of biological
organization from organisms, multiple species, to populations all the
way to ecosystems (Kienzler et al., 2017, 2019; Segner, 2011). Sev-
eral different MoA frameworks exist for classifying chemicals
(Verhaar et al., 1992; Russom et al., 1997; Kienzler et al., 2017),
which allowed developing robust predictive tools for MoA classifica-
tion such as EnviroTox database (Kienzler et al., 2019; Connors et al.,
2019) and TEST software (Martin et al., 2013, 2015). However, such
tools are mostly based only on vertebrate information specifically
fish toxicity data, thus limiting their application to aquatic environ-
mental RA. Similarly, different QSAR models predicting toxicity for
single chemicals in honey bees are available but to date these do
not address the challenge of the integration of toxicity prediction to-
gether with MoA profiling (Venko et al., 2018; Singh et al., 2014;
Hamadache et al., 2018; Como et al., 2017; Toropov and Benfenati,
2007; Devillers et al., 2002). MoA information together with infor-
mation on adverse outcome pathways (AOPs) in honey bees can pro-
vide a sound understanding of the link betweenmolecular targets, as
molecular initiating event and key events leading to adverse effects
at individual and colony level as recently for neonicotinoids
targeting nicotinic acetylcholine receptors in honey bees (LaLone
et al., 2017).

The present manuscript aims to address the challenge of integrating
MoA information in QSAR models with the first integrative honey bee
QSAR models for PPPs using open source databases i) to predict acute
contact toxicity (LD50) and ii) to profile the MoA of active substances.
In addition, the current study explores the development of harmonised
MoA classification schemes to relate and structure toxicological informa-
tionwith target sites of PPPs active substances for a range of applications,
including toxicity predictions and refining the grouping of chemicals for
component-based RA of multiple chemicals (More et al., 2019).
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2. Materials and methods

2.1. QSAR model development

2.1.1. Data curation
Pesticide toxicity data for honey bees (Apis mellifera) expressed

as LD50 μg/bee (acute contact, 48 h) were retrieved in June 2018
from three publicly available databases (1) EFSA's chemical hazards
database “OpenFoodTox” (Benfenati et al., 2020; DOI: https://doi.
org/10.5281/zenodo.3693783), (2) US-EPA ECOTOXicology
knowledgebase (ECOTOX; available at https://cfpub.epa.gov/
ecotox/) and (3) Pesticide Properties DataBase (PPDB; available at
https://sitem.herts.ac.uk/aeru/ppdb/en/index.htm). Criteria for
data pruning were applied following to the official guideline
(OECD, 1998) according to which pesticides are administered by
contact routes to represent the type of exposure under field condi-
tions. Overall, information on the specific criteria applied for the
data pruning within each database are presented in Table 1.

After the creation of a list of unique CAS numbers and names, all the
SMILES have been retrieved with a semi-automated workflow
(Gadaleta et al., 2018). SMILES provided with the original databases
have been used for manual check and no differences have been found.

After an analysis on stereoisomers, it has been found that a high per-
centage of molecule had chiral points without any specification of chi-
rality. This finding led us to the decision of stripping all the
stereoisomer information from SMILES in order to have a more homog-
enous dataset.

SMILES have then been associated with original values and two dif-
ferent procedures have been adopted whether it was a classification or
regression dataset building:

• Classification-based models; the threshold used for toxicity classifi-
cation was 100 μg/bee, which corresponds to the limit test (OECD,
1998). If the values associated to the same SMILES fell under and up
this threshold, the relative compound have been excluded for classifi-
cation modelling. The final dataset is constituted by 413 compounds.

• Regression-basedmodel; all compounds presenting the qualifier (N)
were excluded. All valueswere converted in μmol/bee and grouped by
SMILES; geometric means for each value associated with the same
SMILES were calculated. When values associated with the same
SMILES showed a 3-fold difference between the maximum and the
minimum, the relative compound was excluded from the regression
modelling. When continuous data were available, these were trans-
formed on the logarithmic scale. In addition, compounds excluded
from the classification modelling were also excluded from the regres-
sion modelling. This is of particular relevance to abamectin and
avermectin B1 which were both manually excluded because they
Table 1
Criteria applied for the data pruning of toxicity data (expressed as LD50) as reported in three d

Database Species Organism life
stage

Exposu
duratio

OpenFoodTox Honey bee Adult 48 h

US-EPA ECOTOX Apis mellifera (with all subspecies) Adult 48 h

PPDB Honey bees (Apis spp.) NA 48 h

NA = not available.
are used as a mixture. The final dataset was built from 113
compounds.

2.1.2. Data splitting
Both datasets for classification-based and regression-based models

were divided into a Training (TS) and Validation Set (VS) in a ratio of
80:20. The number of compounds in each set is shown in Table 2. In
order to ensure a uniform distribution of the endpoint values and to
have the widest possible chemical space in the two subsets, we applied
an activity/structure samplingmethod. Pubchem fingerprints are calcu-
lated starting from SMILES. In case of regression-based models five
equal-sized bins were created based on fixed ranges of experimental
values. For classification-basedmodels, only two groups have been con-
sidered (high toxicity – low toxicity). For each bin, a deterministic algo-
rithm selected the 80% of compounds starting from a selected group of
compounds (the first 5 compounds of the dataset) and looking for the
most diverse molecules using as metric the Tanimoto similarity coeffi-
cient (Tanimoto, 1958) calculated on fingerprint. The picking algorithm
is calledMaxMin (Ashton et al., 2002). The resulting 80% of each binwas
regrouped in TS and the remaining compounds constituted the VS
(Worth et al., 2005; Golbraikh and Tropsha, 2002; Golbraikh et al.,
2003).
2.1.3. Calculation of molecular descriptors
Dragon 7.0 was used for the calculation of 2 Dmolecular descriptors

while stereoisomer information was removed. Moreover, descriptors
with constant values (standard deviation 0) or correlated over 95%
(Pearson correlation coefficient) with another descriptor (stronger cor-
relationwith the endpoint) were rejected. Centering and scaling aswell
as a range of methods of variable selection to fit the algorithm used for
the model derivation were applied to all descriptors. Genetic algorithm
has been used for Decision Trees (DT), k-nearest neighbors (k-NN),
Multiple linear regression (MLR) and Partial least squares regression
(PLS) (OECD, 2007), while VSURF (Genuer et al., 2015) has been used
for random forest (RF) (Breiman, 2001). Genetic algorithm (OECD,
2007) has been applied with gaselect (Kepplinger et al., 2017) R pack-
age implementation, using a custom fitness function. The same user
function (Underlying Algorithm for the derivation of the fitness func-
tion) is based on the same package of the algorithm used after the de-
scriptor selection and it is the same of the following model derivation.
In particular, a custom function has been implemented using cross-
validation error as given in the output of DT R implementation and
Cohen's Kappa (Cohen, 1960) between experimental and Cross vali-
dated predictions for k-NN.
ifferent databases (OpenFoodTox, US-EPA ECOTOX, PPPDB).

re
n

Route Dose unit
(LD50)

Qualifier
(tested chemical)

Chemical
purity

Dermal μg/bee μg/piece
ng/bee

“As such” NA

Topical,
Dermal

μg/piece
μg/org
μg/bee
μg/g org
ng/μl
ng/org
AI ng/org
ppm
ppb
AI mg/org

NA N80

Contact μg/bee NA NA

https://doi.org/10.5281/zenodo.3693783
https://doi.org/10.5281/zenodo.3693783
https://cfpub.epa.gov/ecotox/
https://cfpub.epa.gov/ecotox/
https://sitem.herts.ac.uk/aeru/ppdb/en/index.htm


Table 2
Datasets splitting for classification- and regression-based models. The complete datasets
are reported in Tables S1 and S2.

Classification-based models Regression-based models

Train 328 88
Test 83 25
Tot 411 113
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2.1.4. Learning algorithms
In order to build classification-based models, DT, RF and k-NN were

employed. With regard to regression models MLR and PLS were used.
All the parameters are reported in Tables S3–S4 for classification- and
regression-based models, respectively.

2.1.4.1. Multi linear regression. MLR is the most popular algorithm for
QSAR development since it produces a transparent and an algorithm
that is easily reproducible (OECD, 2007). MLR describes how a single re-
sponse variable “Y” depends linearly on a number of predictor variables.
AMLR can lead easily to overfitting, especiallywhen dealingwith a high
number of predictors. In order to avoid overfitting, genetic algorithm
has been applied using as fitness function Q2. The algorithm used is
“lm” as implemented in the package caret (Kuhn, 2008).

2.1.4.2. Partial least squares. PLS is a combination of MLR and principal
component analysis (PCA). It performs a MLR using as predictors the
principal components of the original data matrix. The algorithm used
is “pls” as implemented in the package caret. In order to select the
best parameters “Caret” hyper parameter tuning grid has been used.
For pls implementation only the number of components is tuned.

2.1.4.3. K-nearest neighbor. The k-NN identifies a k number of neighbors
for the target compound that will be used to provide a prediction of the
endpoint. It is a transparent algorithm widely used for QSAR datasets
with different similarity metrics to select neighbors (Manganaro et al.,
2016). The algorithm uses a metric to measure distances between mol-
ecules, after pruning of molecular descriptors using Genetic Algorithm.
The algorithm used is “KKNN” (Samworth, 2012) implemented in the
package caret. In order to select the best parameters “Caret” hyper pa-
rameter tuning grid has been used. For k-NN implementation these pa-
rameters are tuned: the maximum number of neighbors (kmax),
Parameter of Minkowski distance (distance) and the type of kernel esti-
mate of the densities, used to weight the mean (kernel).

2.1.4.4. Decision trees. DTs (Quinlan, 1986, 1987) are flowchart-like
structures formed by a series of nodes that generates a set of rules
that follow a “IF Variable A is X THEN…” pattern. All the rules are hier-
archically connected until a terminal node is reached, which assigns the
class to the compound. The used algorithm is “RPART” as implemented
in the package caret. In order to select the best parameters “Caret”hyper
parameter tuning grid has been used. For RPART implementation only
the complexity parameter (CP) is optimised, leading to a minimum im-
provement in the model needed at each node.

2.1.4.5. Random forest. After VSURF variable selection, a RF variant as im-
plemented in the package “Ranger” (Wright and Ziegler, 2017) has been
used formodel derivation. In order to select the best parameters “Caret”
(Kuhn, 2008), hyper parameter tuning grid has been used. Three pa-
rameters were tuned by grid search: mtry (number of randomly se-
lected descriptors used in each tree of the RF), splitrule (the rule used
to choose descriptors for a single tree, i.e. “gini” or “extratrees” for clas-
sification; “variance” or “extra trees” for regression), and min.node.size
(minimal node size of trees). The number of trees was left as default
value (500).
2.1.5. Statistical criteria

2.1.5.1. Classification-based models. In order to evaluate the performance
of the classification-based models for two classes LD50 b 100 μg/bee
(1) and LD50 ≥ 100 (0), the following statistical criteriawere: sensitivity,
specificity, accuracy (BA) and Matthews correlation coefficient (MCC).
Generally, the MCC coefficient is applied in machine learning to mea-
sure the quality of binary classifications, particularly when the classes
present very different sizes (Dao et al., 2011).

Sensitivity ¼ TP
TPþ FN

ð1Þ

Specificity ¼ TN
TNþ FP

ð2Þ

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð3Þ

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þp ð4Þ

TP, TN, FP and FN represent the number of true positives, true nega-
tives, false positives and false negatives, respectively. MCC values range
between −1 and +1, while the latter indicates a perfect prediction, a
value of 0 indicate a prediction no better than a random one, and a
value of −1 show total disagreement between predicted and observed
values (Dao et al., 2011).

2.1.5.2. Regression-based models. The determination coefficient (R2) is
thefitness function used to evaluate the goodness offit and is calculated
as shown in Eq. (5).

R2 ¼ 1−
P

yⅈ−ŷⅈð Þ2P
yⅈ−yⅈð Þ2

ð5Þ

where yi is the experimental value of the i-th chemical in the dataset; ŷi
is the calculated value of the i-th query compound in the dataset for the
determination of R2; yⅈ is the mean of the experimental values of the
compounds in the dataset, for all the N compounds. Similarly, RMSE
(root mean square error) is an additional parameter used in the evalu-
ation (Eq. (6)) which is calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX ŷⅈ−yⅈð Þ2

N

s
ð6Þ

TheCross-validated determination coefficient (Q2) has beenused for
the calculation of statistics in cross-validation (Eq. (7)):

Q2 ¼ 1−

P
yk− ýk

� �2

P
yk−ykð Þ2

ð7Þ

yk; ýk; y are observed, cross validated prediction and average values
of the dependent variable, respectively (Golbraikh and Tropsha, 2002).
For all the models the reported Q2 is the mean value of the Q2 of a 5-
fold cross-validation repeated 3 times. Similarly, additional statistical

parameters such as Q2-F1, Q2-F2, Q2-F3, CCC, r20, r2m, r2, Δr2m, k and k′
are calculated according to Gramatica and Sangion (2016).

2.1.6. Applicability domain
The applicability domain (AD) of a QSAR model is defined as “the

physico-chemical, structural, or biological space, knowledge or informa-
tion on which the TS of the model has been developed, and for which it
is applicable to make predictions for new compounds[…]. Ideally, the
QSAR should only be used to make predictions within that domain by
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interpolation not extrapolation” (Eriksson et al., 2003). The models are
specifically designed to deal with pesticides. The model performance
is taken into account without considering AD. However, since the set
used for modelling contains all the molecules under 800 of molecular
weight, this value should be considered as the upper limit to predict
compounds in a reliable way. Moreover, the QSAR models here devel-
oped will be implemented in the open source platform VEGA-HUB
(https://www.vegahub.eu/; Benfenati et al., 2017), therefore the reli-
ability of the prediction will be evaluated using the Applicability Do-
main Index (ADI), which is an aggregated result taking into account
several aspects:

1) Similar molecules with known experimental value and their accu-
racy (or average error) in their prediction,

2) Concordance among the target and similar molecules for the exper-
imental data,

3) Atom Centered Fragments similarity check,
4) Descriptors noise sensitivity analysis,
5) Model descriptors range check.

As additional value, the information of theMoA of the closest neigh-
bors will be provided in order to better assess the reliability of the
prediction.

2.2. Mode of action

Several definitions of MoA are available from the literature, and sci-
entific advisory bodies (WHO, 2009; Boobis et al., 2006; OECD, 2017) al-
though the common goal is facilitating classification of chemicals
according to mechanistic information (e.g. chemical class, molecular
target) and through robust schemes (Verhaar et al., 1992; Enoch et al.,
2008; Carriger et al., 2016; Kienzler et al., 2019). However, since here
Fig. 1. Principal Component Analysis (PCA) on DRAGON descriptors for c
the authors refer exclusively to pesticides active substances used in
PPPs, focus is given to classification schemes which are principally
based on MoA as the target site of the substance (Sparks and Nauen,
2015; Casida, 2009; Wing et al., 2005). Hence, the main criterion for
the refined classification of the MoA relies on the availability of the in-
formation describing the interactionwith the receptor of the target spe-
cies (e.g. sodium channel modulator, Acetylcholinesterase (AChE)
inhibitors).

Qualitative information on theMoA of substances (n=113) present
in the regression-basedQSARmodel (see Section 2.1.5.2)were collected
fromdifferent sources such as publicly available databases and the peer-
reviewed scientific literature. Priority was given to well-defined
schemes used for the classification of pesticides such as the one pro-
posed by the Insecticide Resistance Action Committee (IRAC; Sparks
and Nauen, 2015), Fungicide Resistance Action Committee (FRAC;
Hermann and Stenzel, 2019) and Herbicide Resistance Action Commit-
tee (HRAC; Beffa et al., 2019). Similarly, MoA information was retrieved
from the PPDB (available at https://sitem.herts.ac.uk/aeru/ppdb/en/
index.htm). When no data were available on the MoA from the above
mentioned sources, the publicly available scientific literature were in-
vestigated (Sanchez-Bayo, 2012; Simon-Delso et al., 2015; Johnson
et al., 2012, 2013; Leroux et al., 2008; De Castro et al., 2015). In addition,
a comparison of MoA nomenclatures (i.e. site of action) reported in the
different databases/schemes was carried out taking as main reference
the Resistance Action Committee classifications (e.g. IRAC, FRAC,
HRAC) in order to provide users with a harmonised classification
scheme. Pesticides active substances were classified according to their
i) function (e.g. insecticide, fungicide, acaricides, herbicides, etc.), ii)
chemical class (e.g. carbamates, pyrethroids, etc.) and iii) site of action
(e.g. AChE inhibitors, sodium channel modulators). Finally, chemicals
were grouped according to the harmonised MoA (i.e. site of action) to
allow an assessment of potential variability in acute contact toxicity
lassification-based models (ellipsoid calculated at 0.95 probability).

https://www.vegahub.eu/
https://sitem.herts.ac.uk/aeru/ppdb/en/index.htm
https://sitem.herts.ac.uk/aeru/ppdb/en/index.htm


Fig. 2. Histogram of pLD50 (pLD50 μmol/bee) data used for regression-based model.

Table 3
Selected descriptors for random forest (RF), decision tree (DT) and k-nearest neighbors
(k-NN) classification-based models.

RF DT KNN

X0Av B09[C-O] ICR
F02[C-P] F02[C-P] LOC
ATSC1e SpMax_A VE1_B(p)
MATS3v ChiA_B(m) MATS8e
SpMax1_Bh(s) ATS1m GATS3m
SpMAD_X SpMax2_Bh(p) Eta_sh_x
RBF P_VSA_s_1 CATS2D_04_DA
B05[C-P] – CATS2D_00_LL
MATS1s – T(Cl..Cl)
– – SAdon
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(potency expressed as logLD50 μmol/bee) in honey bees across and
within MoA groups. This exercise provides means for a refined
prioritisation and grouping of chemicals for RA of combined exposure
to multiple chemicals as recommended by EFSA MIXTOX Guidance, as
well as supports to move towards an understanding of mechanisms of
toxicity of active substances in PPPs (More et al., 2019).

3. Results and discussions

3.1. QSAR model development

3.1.1. Data collection and analysis
PCA has been performed in order to check if the TS covers the space

of the test set (Fig. 1). An ellipsoid has been drawn for both sets in order
to check the overlap. The test resulted structurally covered by the TS. As
reported in the Materials and methods, 132 substances belong to the
minor class (toxic) while 279 substances to the major one (non-toxic),
having a ratio higher than 1:2. The dataset is slightly unbalanced to-
wards the low toxicity substances (LD50 ≥ 100 μg/bee), nonetheless
there is enough coverage of theminor class, making the dataset suitable
for modelling. Similarly, he negative logarithm of LD50 (pLD50 μmol/
bee) have been used for the quantitative modelling. The data distribu-
tion curve of pLD50 is plotted in Fig. 2.

3.1.2. Chemical descriptors selection
VSURFwas used to select best descriptors as input for both classifica-

tion and regression RF. Each RF used for the feature selectionwas consti-
tuted by 100 trees. Genetic Algorithm used for the other models (MLR,
PLS, DT, k-NN) was set up to find the best number of descriptors be-
tween 5 and 12. Tables 3 and 4 report the selected descriptors selected
for classification and regressionmodels, respectively. Additionally, plots
showing the most important variables for each model are reported in
the supplementary material (Figs. S1–S2).
3.1.3. Classification-based models
In this study, three classification-based models were developed

using different approaches as RF, DT and k-NN. For eachmodel, the per-
formance in TS, 5-Fold cross validation (CV) and VS was evaluated in
order to identify the best model (Fig. S3). Results for statistical quality
are shown in Table 5. All the models showed an acceptable sensitivity
(N0.89), while the performance for RF and DT decreased when evaluat-
ing the specificity in CV (0.53 and 0.54, respectively). MCC for VS across
the threemodels is above 0.75, thus showing that themodels are able to
identify both classes when predicting an external set of compounds
(Table 5 and Fig. S3). However, our results show that k-NN is the most
robust model when identifying minority class (b100 μg/bee) com-
pounds. Additional Radar plots of the models are reported in



Table 6
Comparison of the classification-based model (k-NN; best model) developed here with
publicly available two-category models for acute toxicity towards honey bees (threshold
100 μg/bee). Results of the statistical quality are reported for training (TS) and validation
sets (VS) in each model.

Reference Set Compounds (n) Sensitivity Specificity Accuracy

Venko et al., 2018 TS 205 0.88 0.90 0.89
VS 49 0.75 0.79 0.78

Como et al., 2017 TS 192 0.60 0.88 0.76
VS 50 0.80 0.86 0.84

Singh et al., 2014 TS 175 1.00 1.00 1.00
VS 62 0.86 1.00 0.87

Present study
(k-NN model)

TS 328 0.77 0.96 0.90
VS 83 0.93 0.85 0.90

Table 4
Selected descriptors for random forest (RF), multi linear regression (MLR), partial least
squares (PLS), decision tree (DT) and k-nearest neighbors (k-NN) regression-based
models.

RF MLR PLS DT KNN

CATS2D_07_LL CATS2D_07_LL CATS2D_07_LL piPC06 X4v
MATS8v MATS4m F06[N-S] ChiA_B(p) GGI10
X3v GATS8s MATS4m MATS8v SpMin2_Bh(s)
CATS2D_03_DL GGI8 GATS4e SpMax2_Bh

(p)
Eig02_AEA
(dm)

TI2_L JGI4 GATS8s P_VSA_m_2 SsOH
IVDE CATS2D_00_DD JGI8 SpMaxA_EA

(ed)
NssO

SpMax2_Bh(p) CATS2D_03_DA JGT Eig03_EA
(bo)

CATS2D_02_DD

CATS2D_09_LL CATS2D_03_DL CATS2D_03_DL Eig05_EA
(dm)

CATS2D_07_LL

SaaN F03[C-N] F02[N-S] F04[N-P] F01[N-O]
SpPosA_B(i) Psychotic-50 F04[O-O] F04[O-S] F05[C-S]
GATS5m – – – F06[N-S]
MATS4v – – – F07[C-N]
N-074 – – – –
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supplementary materials (Fig. S3), while the predictions and the de-
scriptors are reported in Tables S5–S7.

In the literature, other classification-based QSAR models to predict
pesticides toxicity in honey bees are available, and thus a comparison
of their predictive performance is illustrated here (Table 6). Overall,
the k-NNmodel reported here shows higher performance with regards
to statistical quality of the results compared with those from existing k-
NN models (Como et al., 2017; Venko et al., 2018). Similarly, the PNN-
QSTR model (Singh et al., 2014) demonstrated a comparable perfor-
mance compared with the current k-NN model, although based on a
probabilistic neural network approach. Here, it is important to highlight
that the two-category model presented here is the first classifier built
based on the largest available dataset encompassing data for 411 pesti-
cides active substances from three different open access sources (i.e.
EFSA's OpenFoodTox,US-EPA ECOTOXand PPDB) and thus it has the ad-
vantage to increase the application domain of the model for a large
range of pesticides.
3.1.4. Regression-based model
As for the classification-based models, we evaluated the perfor-

mance in TS, CV and VS. Overall, all models provided good predictivity
with regards to goodness of fit (TS) except for PLS and DT, which were
associated with significantly R2 lower than those from other models
(Table 7). Statistical quality for DT model was not satisfactory for CV
and VS, while RF had an R2 close to 0.5 in CV. In terms of reproducibility
and overall performance, our results show that the best model is repre-
sented by k-NN (R2= 0.74) followed by RF (R2= 0.72) (Table 7). Addi-
tional Scatter plots (predicted vs experimental) of all models here
developed are reported in Fig. S4, while the predictions and the descrip-
tors are reported in Tables S8–S12.

The best model developed here (k-NN) was used for comparative
purposes with the published QSAR regression models predicting
Table 5
Results of the statistical quality for random forest (RF), decision tree (DT) and k-nearest
neighbor (k-NN) classification-based models. Test set (TS), cross validation set (CV) and
validation set (VS) are reported.

Algorithm RF DT K-NN

Set TS CV VS TS CV VS TS CV VS

Sensitivity 1.00 0.94 0.96 0.95 0.92 0.89 0.77 0.90 0.93
Specificity 1.00 0.54 0.74 0.58 0.53 0.89 0.96 0.67 0.85
Accuracy 1.00 0.81 0.89 0.83 0.80 0.89 0.90 0.83 0.90
MCC 1.00 0.54 0.75 0.59 0.50 0.76 0.76 0.59 0.78
honey bee toxicity. Results are provided in Table 8 and show that is
the partial within the current model is related to the VS and the charac-
terisation of the data points. In contrast to Hamadache et al. (2018), our
k-NN model is highly curated, and all the data above 100 μg/bee (limit
test) were filtered out (OECD, 1998). In fact, these data points, when in-
cluded in amodel, behave as attractors of the regression giving an over-
estimation of optimistic performances. Hence, after filtering those com-
pounds, the predictivity of the refined QSAR model increased signifi-
cantly, thus providing a tool to predict honey bee toxicity for
substances of concern (i.e. moderate/high toxicity) with high precision.
For this reason, the classification- and regression-based QSAR models
developed here are not meant to be used as two distinct models but
rather as an integrative tool following a specific hierarchical workflow
(Fig. 3).

3.1.5. Integrative honey bee QSAR model
As illustrated in the above paragraph, the current study aimed to de-

velop thefirst integrative honey beeQSARmodel to allowpredicting the
toxicity of unknown compounds following a specific hierarchical
workflow (Fig. 3). Here, 12 compounds were tested as independent
datasets compared to the training sets of both classification- and
regression-based models for the evaluation of the predictivity of the
models and the potential application of the integrative tool. Results
show that for themajority of compounds (n=10), the quantitative pre-
diction provides satisfactory predictions compared to those from the
corresponding experimental data (Table 9) with the exception of two
compounds (momfluorothrin, CAS n. 609346-29-4; chloroxuron, CAS
n. 1982-47-4) for which the predictions from the classification-based
model underestimated the toxicity resulting in an incorrect classifica-
tion (Table 9).

An example of output from the integrative honey bee QSARmodel is
shown in Table 9 which reports CAS number, experimental MoA, pre-
dicted toxicity class (1 = toxic/0 = non-toxic; threshold 100 μg/bee)
and quantitative prediction (experimental LD50 μg/org) for the target
chemical as well as the five most similar compounds identified by the
k-NN model for each target. Hence, one of the novelty of the tool is to
provide users with toxicity predictions (LD50 μg/org) as well as experi-
mental MoA and LD50 for the five most similar compounds identified
by the k-NN model.

3.2. MoA assessment

3.2.1. Harmonised MoA classification scheme
A total of 113 substances were included in the analysis of the MoA

nomenclatures in order to provide an harmonised classification of pes-
ticides active substances (used in PPPs) according to i) function (e.g. in-
secticide, fungicide, etc.), ii) chemical class (e.g. carbamates,
organophosphate, etc.), and iii) site of action (e.g. sodium channelmod-
ulators) (Table S13).

According to the above-mentioned criteria, an example of different
nomenclatures applied in MoA classification for insecticides and



Table 7
Statistical robustness and performance for random forest (RF), multi linear regression (MLR), partial least squares (PLS), decision tree (DT) and k-nearest neighbors (k-NN) regression-
based models. Test Set (TS), Cross Validation set (CV) and Validation Set (VS) are reported. Statistical parameters are reported and defined according to Gramatica and Sangion (2016).

Parameter RF MLR PLS DT KNN Acceptability criteria

RMSE - TS 0.41 0.66 0.76 0.71 0.39
r2` TS 0.88 0.7 0.61 0.66 0.9 0.6
MAE - TS 0.34 0.56 0.61 0.53 0.3
CCC - TS 0.93 0.82 0.76 0.79 0.94
Q2
5-fold CV 0.49 0.59 0.53 0.35 0.63 0.5

RMSE - VS 0.8 0.93 0.9 1.01 0.71
r2 - VS 0.72 0.55 0.59 0.46 0.74 0.6
MAE - VS 0.63 0.76 0.66 0.79 0.52
Q2-F1 0.65 0.53 0.56 0.44 0.72
Q2-F2 0.65 0.52 0.56 0.44 0.72
Q2-F3 0.57 0.41 0.45 0.31 0.65
CCC - VS 0.75 0.73 0.71 0.66 0.83
r20 - VS 0.65 0.53 0.58 0.46 0.73
r2m - VS 0.53 0.48 0.52 0.43 0.66 0.5

r2 - VS 0.35 0.42 0.35 0.31 0.54 0.5

Δr2m - VS 0.36 0.11 0.34 0.23 0.23 b0.3
k - VS 0.98 0.96 0.93 0.94 0.96 0.85 ˂ k ˂ 1.15
k′ - VS 0.93 0.91 0.95 0.91 0.97 0.85 ˂ k′ ˂ 1.15
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fungicides is provided in Tables 10 and 11, respectively. Qualitative infor-
mation onMoAwere extracted from three different sources: PPDB, Resis-
tance Action Committee classifications (i.e. IRAC, FRAC, HRAC), and the
peer reviewed scientific literature. Our results suggest that PPDB provides
users with additional general and toxicological information on a number
of substances (e.g. systemic/non-systemic, authorisation status), although
the harmonisation ofMoAhas not been fully explored yet. Similarly, stud-
ies from the peer reviewed scientific literature have often applied a range
of criteria (chemical class vs target site) when classifying chemicals, and
did not prove univocal MoA nomenclature and classification schemes
(Sanchez-Bayo, 2012; Johnson et al., 2012, 2013; Simon-Delso et al.,
2015). In contrast, IRAC, FRAC and HRAC provide structured schemes,
classifying pesticide active substances according to their target site (and
cross-resistance), thus encompassing 32 insecticides, 56 fungicides and
26 herbicides MoAs, respectively (Sparks and Nauen, 2015; Hermann
and Stenzel, 2019; Beffa et al., 2019). Therefore, although the different
classification schemes analysed here have not been developed for the
same purposes, the authors acknowledge that Resistance Action Commit-
tee schemes (IRAC, FRAC, HRAC) provide users with a more systematic
and sound classification of MoAs (i.e. target site) for pesticide active sub-
stances used in PPPs.

A similar research effort to harmonise MoA classification schemes
has been proposed by Kienzler et al. (2017, 2019). However, authors fo-
cused only on aquatic toxicity (e.g. fish) while taking into account sev-
eral different definitions of MoA having degree of specificity based on
fish behavioural responses, toxicological responses or weight of
Table 8
Comparison of regression-basedmodel here developed with publicly availablemodels for
acute toxicity towards honey bees. Determination coefficient (R2) and root-mean-square
error (RMSE) are reported.

Reference Set Compounds (n) R2 RMSE

Devillers et al., 2002 TS 86 0.82 0.430
VS 11 0.94 0.39

Toropov and Benfenati, 2007 TS 85 0.68 0.82
VS 20 0.72 0.68

Dulin et al., 2012 TS 39 0.81 0.350
VS 6 0.85 0.218

Singh et al., 2014 TS 190 0.85 0.50
VS 47 0.86 0.33

Hamadache et al., 2018 TS 95 0.98 0.36
VS 16 0.96 0.71

Present study TS 88 0.90 0.39
VS 25 0.74 0.71
evidence classification. Therefore, this manuscript provides the first
harmonised MoA classification for terrestrial non-target species and
has been applied to honey bees, taking into account existing knowledge
on the specific target site of pesticide active substances.

Overall, such MoA harmonised classification is valuable for the de-
velopment and the testing of the validity of QSAR model and other in
silico tools, thereby contributing to a sound mechanistic interpretation
of the model (OECD, 2007). A specific application of this MoA analysis
is in the refinement of Applicability Domain Index (ADI) definitions
for k-NN models in the open source VEGA platform (see
Section 2.1.6). In a similar fashion, k-NN QSAR models can be used to
identify similar compounds “neighbors” and their structural features re-
sponsible for the toxicological mechanism(s) of the active substance (as
illustrated in Sections 3.1.3 and 3.1.4), thus allowing prediction of po-
tential target sites in terrestrial organisms such as earthworms and
honey bees (Roy et al., 2020; Ghosh et al., 2020).

It should be noted that the harmonised classification proposed
here (Table S13) has been carried out for 113 chemicals for which
data were applied for the development of the regression-based
QSAR model (Section 3.1.4), thereby the full list of substances pro-
vided by the Resistance Action Committee classifications was not in-
cluded (i.e. IRAC, FRAC, HRAC). However, although a smaller number
of chemicals was included in the MoA analysis, the substances
underwent data curation through a structured workflow in order to
avoid ambiguous structures, and thus providing high-quality and cu-
rated datasets (Gadaleta et al., 2018).
Classifica�on-based model  
(LD50 > 100 μg/bee)

NOYES

Low toxicity High toxicity 

Substance of low concern Toxicity Value Es�ma�on 
(regression-based model)

Fig. 3. Hierarchical workflow to apply classification- and regression-based models for
hazard assessment of pesticides active substances in honey bees.



Table 9
Results of the validation of the integrative honey bee QSARmodel for 12 target chemicals that are independent from the training sets of both classification- and regression-basedmodels.
The output illustrates the CAS number, experimental MoA, predicted toxicity class (1= toxic/0= non-toxic; threshold 100 μg/bee), experimental LD50 (μg/org), and quantitative predic-
tion (pred LD50 μg/org) of the target substance. In addition, the table provides the five most similar compounds identified through the k-NN model for each target chemical.

Target Chemical#1 Chemical#2 Chemical#3 Chemical#4 Chemical#5

Momfluorothrin 

CAS: 609346-29-4 

MoA: Sodium channel 

modulators_Na 

channel(+) 

Pred Class: 0 

Exp (μg/org): 0.2 

Pred (μg/org): 0.22 

4-(2,4-

Dichlorophenoxy)b

utanoic acid 

CAS: 94-82-6 

MoA: Synthetic 

auxins (action like 

indole acetic acid) 

Exp (μg/org): 14.5 

Chlorpropham 

CAS: 101-21-3 

MoA: Inhibition of 

mitosis/microtubul

e organization 

Exp (μg/org): 96.1 

2,2-Dimethyl-1,3-

benzodioxol-4-ol 4-

(N-

methylcarbamate) 

CAS: 22781-23-3 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.43 

methomyl 

CAS: 16752-

77-5 

MoA: 

Acetylcholinest

erase (AChE) 

inhibitors_ACh

E(-)   

Exp (μg/org): 

0.16 

alachlor 

CAS: 15972-60-8 

MoA: Inhibition of 

very-long-chain fatty 

acid synthesis 

(VLCFAs) 

Exp (μg/org): 16.0 

Terbufos 

CAS: 13071-79-9 

MoA: 

Acetylcholinesterase 

(AChE) 

inhibitors_AChE(-)   

Pred Class: 1 

Exp (μg/org): 4.1 

Pred (μg/org): 2.79 

Tefluthrin 

CAS: 79538-32-2 

MoA: Sodium 

channel 

modulators_Na 

channel(+) 

Exp (μg/org): 0.28 

Resmethrin 

CAS: 10453-86-8 

MoA: Sodium 

channel 

modulators_Na 

channel(+) 

Exp (μg/org): 0.06 

Imiprothrin 

CAS: 72963-72-5 

MoA: Sodium 

channel 

modulators_Na 

channel(+) 

Exp (μg/org): 0.4 

5-Amino-1-

[2,6-dichloro-

4-

(trifluoromethy

l)phenyl]-4-

[(trifluorometh

yl)sulfinyl]-1H-

pyrazole-3-

carbonitrile 

CAS: 120068-

37-3 

MoA: GABA-

(1,3,4,5,6,7-

Hexahydro-1,3-dioxo-

2H-isoindol-2-yl)methyl 

ester 2,2-dimethyl-3-

(2-methyl-1-

propenyl)cyclopropane

carboxylic acid 

CAS: 7696-12-0 

MoA: Sodium channel 

modulators_Na 

channel(+) 
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gated chloride 

channel 

blockers_GABA

-R(-) 

Exp (μg/org): 

0.01 

Exp (μg/org): 0.16 

Chloroxuron 

CAS: 1982-47-4 

MoA: Inhibition of 

photosynthesis at PS 

II 

Pred Class: 0 

Exp (μg/org): 16.0 

Pred (μg/org): 19.88 

Alachlor

CAS: 15972-60-8 

MoA: Inhibition of 

very-long-chain 

fatty acid synthesis 

(VLCFAs) 

Exp (μg/org): 16.0 

Methiocarb 

CAS: 2032-65-7 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.29 

Chlorpropham 

CAS: 101-21-3 

MoA: Inhibition of 

mitosis/microtubul

e organization 

Exp (μg/org): 96.1 

4-Bromo-2-(4-

chlorophenyl)-

1-

(ethoxymethyl)

-5-

(trifluoromethy

l)-1H-pyrrole-

3-carbonitrile 

CAS: 122453-

73-0 

MoA: 

Uncoupler of 

oxidative 

phosphorylatio

n 

Exp (μg/org): 

0.12 

2,2-Dimethyl-1,3-

benzodioxol-4-ol 4-(N-

methylcarbamate) 

CAS: 22781-23-3 

MoA: 

Acetylcholinesterase 

(AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.43 
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3.2.2. Pesticide active substances toxicity in relation to their MoA
While focus is given to the application of MoA for the grouping of

multiple chemicals for combined exposure RA using component-based
approaches in the ecological area, the honey bee example provides an
application for non-target terrestrial organisms as illustrated in the
EFSA MIXTOX guidance (More et al., 2019).



Pyrethrins (cinerin II) 

CAS: 121-20-0 

MoA: Sodium channel 

modulators_Na 

channel(+) 

Pred Class: 1 

Exp (μg/org): 0.01 

Pred (μg/org): 0.02 

Methomyl 

CAS: 16752-77-5 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.16 

Thiodicarb 

CAS: 59669-26-0 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 3.1 

Chlorbromuron 

CAS: 13360-45-7 

MoA: Inhibition of 

photosynthesis at 

PS II 

Exp (μg/org): 16.0 

Chlorpropham 

CAS: 101-21-3 

MoA: Inhibition 

of 

mitosis/microtu

bule 

organization 

Exp (μg/org): 

96.1 

2,2-Dimethyl-1,3-

benzodioxol-4-ol 4-(N-

methylcarbamate) 

CAS: 22781-23-3 

MoA: 

Acetylcholinesterase 

(AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.43 

Pyrethrins (jasmolin 

II) 

CAS: 1172-63-0 

MoA: Sodium channel 

modulators_Na 

channel(+) 

Pred Class: 1 

Exp (μg/org): 0.01 

Pred (μg/org): 0.02 

Methomyl 

CAS: 16752-77-5 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.16 

Thiodicarb 

CAS: 59669-26-0 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 3.1 

Chlorbromuron 

CAS: 13360-45-7 

MoA: Inhibition of 

photosynthesis at 

PS II 

Exp (μg/org): 16.0 

Chlorpropham 

CAS: 101-21-3 

MoA: Inhibition 

of 

mitosis/microtu

bule 

organization 

Exp (μg/org): 

96.1 

2,2-Dimethyl-1,3-

benzodioxol-4-ol 4-(N-

methylcarbamate) 

CAS: 22781-23-3 

MoA: 

Acetylcholinesterase 

(AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.43 

Pyrethrins (cinerin I) 

CAS: 25402-06-6 

MoA: Sodium channel 

modulators_Na 

channel(+) 

Methomyl 

CAS: 16752-77-5 

MoA: 

Thiodicarb 

CAS: 59669-26-0 

MoA: 

Chlorbromuron 

CAS: 13360-45-7 

MoA: Inhibition of 

Chlorpropham 

CAS: 101-21-3 

MoA: Inhibition 

2,2-Dimethyl-1,3-

benzodioxol-4-ol 4-(N-

methylcarbamate) 

CAS: 22781-23-3 
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Pred Class: 1 

Exp (μg/org): 0.01 

Pred (μg/org): 0.07 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.16 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 3.1 

Photosynthesis at 

PS II 

Exp (μg/org): 16.0 

of 

mitosis/microtu

bule 

organization 

Exp (μg/org): 

96.1 

MoA: 

Acetylcholinesterase 

(AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.43 

Pyrethrins (pyrethrin 

I) 

CAS: 121-21-1 

MoA: Sodium channel 

modulators_Na 

channel(+) 

Pred Class: 1 

Exp (μg/org): 0.01 

Pred (μg/org): 0.06 

Methomyl 

CAS: 16752-77-5 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.16 

Thiodicarb 

CAS: 59669-26-0 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 3.1 

Chlorbromuron 

CAS: 13360-45-7 

MoA: Inhibition of 

photosynthesis at 

PS II 

Exp (μg/org): 16.0 

Chlorpropham 

CAS: 101-21-3 

MoA: Inhibition 

of 

mitosis/microtu

bule 

organization 

Exp (μg/org): 

96.1 

2,2-Dimethyl-1,3-

benzodioxol-4-ol 4-(N-

methylcarbamate) 

CAS: 22781-23-3 

MoA: 

Acetylcholinesterase 

(AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.43 

2,2-Dimethyl-3-(2-

methyl-1-

propenyl)cyclopropan

ecarboxylic acid (3-

phenoxyphenyl)methy

l ester 

CAS: 26002-80-2 

MoA: Sodium channel 

modulators_Na 

channel(+) 

Methomyl 

CAS: 16752-77-5 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.16 

Thiodicarb 

CAS: 59669-26-0 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 3.1 

Chlorbromuron 

CAS: 13360-45-7 

MoA: Inhibition of 

photosynthesis at 

PS II 

Exp (μg/org): 16.0 

Oryzalin 

CAS: 19044-

88-3 

MoA: Inhibition 

of microtubule 

assembly 

Exp (μg/org): 

Chlorpropham 

CAS: 101-21-3 

MoA: Inhibition of 

mitosis/microtubule 

organization 

Exp (μg/org): 96.1 

12 E. Carnesecchi et al. / Science of the Total Environment 735 (2020) 139243



Pred Class: 1 

Exp (μg/org): 0.07 

Pred (μg/org): 0.02 

40.8 

Carbosulfan| 

Carbosulfan 

CAS: 55285-14-8 

MoA: 

Acetylcholinesterase 

(AChE) 

inhibitors_AChE(-)   

Pred Class: 1 

Exp (μg/org): 0.18 

Pred (μg/org): 0.26 

2-Methyl-2-

(methylthio)propan

ol O-

[(methylamino)car

bonyl]oxime 

CAS: 116-06-3 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.29 

Thiofanox 

CAS: 39196-18-4 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.06 

Methomyl 

CAS: 16752-77-5 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.16 

2,2-Dimethyl-

1,3-

benzodioxol-4-

ol 4-(N-

methylcarbama

te) 

CAS: 22781-

23-3 

MoA: 

Acetylcholinest

erase (AChE) 

inhibitors_ACh

E(-)   

Exp (μg/org): 

0.43 

Imiprothrin 

CAS: 72963-72-5 

MoA: Sodium channel 

modulators_Na 

channel(+) 

Exp (μg/org): 0.4 

Ethoprophos 

CAS: 13194-48-4 

MoA: 

Acetylcholinesterase 

(AChE) 

inhibitors_AChE(-)   

Pred Class: 1 

Tefluthrin 

CAS: 79538-32-2 

MoA: Sodium 

channel 

modulators_Na 

Imiprothrin 

CAS: 72963-72-5 

MoA: Sodium 

channel 

modulators_Na 

Resmethrin 

CAS: 10453-86-8 

MoA: Sodium 

channel 

modulators_Na 

5-Amino-1-

[2,6-dichloro-

4-

(trifluoromethy

l)phenyl]-4-

[(trifluorometh

yl)sulfinyl]-1H-

(1,3,4,5,6,7-

Hexahydro-1,3-dioxo-

2H-isoindol-2-yl)methyl 

ester 2,2-dimethyl-3-

(2-methyl-1-

propenyl)cyclopropane

carboxylic acid 
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Exp (μg/org): 5.56 

Pred (μg/org): 0.56 

channel(+) 

Exp (μg/org): 0.28 

channel(+) 

Exp (μg/org): 0.4 

channel(+) 

Exp (μg/org): 0.06 

pyrazole-3-

carbonitrile 

CAS: 120068-

37-3 

MoA: GABA-

gated chloride 

channel 

blockers_GABA

-R(-) 

Exp (μg/org): 

0.01 

CAS: 7696-12-0 

MoA: Sodium channel 

modulators_Na 

channel(+) 

Exp (μg/org): 0.16 

Fenitrothion| 

Phosphorothioic acid 

O,O-dimethyl O-(3-

methyl-4-

nitrophenyl)ester 

CAS: 122-14-5 

MoA: 

Acetylcholinesterase 

(AChE) 

inhibitors_AChE(-)   

Pred Class: 1 

Exp (μg/org): 0.25 

Pred (μg/org): 3.0 

N,N-Bis(2-

methylpropyl)carb

amothioic acid S-

ethyl ester 

CAS: 2008-41-5 

MoA: Inhibition of 

lipid synthesis – 

not ACCase 

Exp (μg/org): 29.0 

Triazamate 

CAS: 112143-82-5 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 27.0 

Chlorpyrifos-methyl 

CAS: 5598-13-0 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.15 

6-Methyl-1,3-

dithiolo[4,5-

b]quinoxalin-2-

one 

CAS: 2439-01-

2 

MoA: N/A 

Exp (μg/org): 

66.47 

Phosphoramidothioic 

acid, O,S-Dimethyl 

ester 

CAS: 10265-92-6 

MoA: 

Acetylcholinesterase 

(AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 1.37 
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Following the results of the critical analysis of MoA nomenclatures
(Section 3.2.1), 17 classes ofMoAs have been defined for pesticide active
substances (n = 113) according their specific target site (Sparks and
Nauen, 2015; Hermann and Stenzel, 2019; Beffa et al., 2019) (Fig. 4
and Table S13). Results show that 38% of chemicalswere classified as in-
secticide/acaricides “Acetylcholinesterase (AChE) inhibitors”, 18% as



Phosphorothioic acid, 

O,O-Diethyl-O-(4-

nitrophenyl)ester 

CAS: 56-38-2 

MoA: 

Acetylcholinesterase 

(AChE) 

inhibitors_AChE(-)   

Pred Class: 1 

Exp (μg/org): 0.18 

Pred (μg/org): 0.19 

triazamate 

CAS: 112143-82-5 

MoA: 

Acetylcholinesteras

e (AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 27.0 

N,N-Bis(2-

methylpropyl)carba

mothioic acid S-

ethyl ester 

CAS: 2008-41-5 

MoA: Inhibition of 

lipid synthesis – 

not ACCase 

Exp (μg/org): 29.0 

6-Methyl-1,3-

dithiolo[4,5-

b]quinoxalin-2-one 

CAS: 2439-01-2 

MoA: N/A 

Exp (μg/org): 

66.47 

methomyl 

CAS: 16752-

77-5 

MoA: 

Acetylcholinest

erase (AChE) 

inhibitors_ACh

E(-)   

Exp (μg/org): 

0.16 

chlorpyrifos-methyl 

CAS: 5598-13-0 

MoA: 

Acetylcholinesterase 

(AChE) 

inhibitors_AChE(-)   

Exp (μg/org): 0.15 
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insecticide/acaricide “Sodium channel modulators”, 6% as herbicides “In-
hibitor of photosynthesis at PS II”, 4% as insecticides “Nicotinic acetylcho-
line receptor (nAChR) competitive modulators”, 4% as acaricide
“Mitochondrial complex I-II electron transport inhibitors” and 4% as fungi-
cides “Sterol Biosynthesis Inhibiting (SBI) class I-II (erg11/cyp51)” (Fig. 4).

Overall, the method for grouping chemicals into assessment groups
(AGs) proposed here has been carried out for chemicals (n= 113) used
in the development of the regression-based QSARmodel, thus including
substances with moderate/high acute (contact) toxicity in honey bees
(LD50 b 100 μg/bee) (Fig. 5 and Table S13).
3.2.2.1. Insecticides/acaricides. According to our results, pyrethroid/pyre-
thrin insecticides and/or acaricides belonging to the MoA group of “so-
dium channel modulators”, showed the highest acute contact toxicity
in honey bees (LD50 = 0.013–23.57 μg/bee), among which 66% with
LD50=0.013–0.10 μg/bee (Fig. 5 and Table S13). However, themost po-
tent toxic insecticide was by far fipronil (CAS. 120068-37-3) which re-
ported LD50 = 0.00389–0.00593 μg/bee (EFSA, 2006) and it is
Table 10
Example of different MoA nomenclatures used for the classification of substances according to
Johnson et al., 2012, 2013).

Substance
name

CAS n. MoA/site of action

PPDB IRAC

Triazamate 112143-82-5 Systemic with contact and stomach action. Acetylcholinest
(Strong eviden
for insecticidal

Thiodicarb 59669-26-0 Mainly stomach action but some contact
effects. Cholinesterase inhibitor.

Chlorpyrifos 2921-88-2 Non-systemic with contact, inhalation and
stomach action. Acetylcholinesterase
(AChE) inhibitor.
classified as a GABA-gated chloride channel blocker (Sanchez-Bayo,
2012). Similarly, insecticides/acaricides within the MoA group “Acetyl-
cholinesterase (AChE) inhibitors”, showed high (contact) toxicity in
honey bees (LD50 = 0.0049–59.8 μg/bee), 69% of which presenting
LD50 b 1 μg/bee (Fig. 5 and Table S13). Interestingly, all AChE inhibitors
insecticides/acaricides were classified as carbamate or organophos-
phate substances (Table S13). By definition, insecticides and acaricides
are generally harmful to non-target terrestrial organisms such as bees
(Douglas et al., 2020; Sanchez-Bayo and Goka, 2016). However, differ-
ences in insecticide toxicity within the same MoA appear to be driven
by their structural features and reactivity, as demonstrated for cyano-
substituted neonicotinoids (e.g. thiacloprid and acetamiprid) which
are three orders of magnitude less toxic to honey bees compared with
other compounds of the same MoA group (Iwasa et al., 2004;
Sanchez-Bayo, 2012; Carnesecchi et al., 2019a, 2019b).

3.2.2.2. Herbicides and fungicides. The majority of triazine- and urea-
derived herbicides (acting as “inhibitors of photosynthesis at PS II”)
different databases/schemes (PPDB; IRAC (Sparks and Nauen, 2015); Sanchez-Bayo, 2012;

Others
(Sanchez-Bayo,
2012; Johnson
et al.,
2012, 2013)

Harmonised
classification

erase (AChE) inhibitors Nerve action
ce that action at this protein is responsible
effects)

Neurotoxic
AChE(−)

Acetylcholinesterase
inhibitors [AChE(−)]



Table 11
Example of different MoA nomenclatures used for the classification of fungicides according to different databases/schemes (PPDB; FRAC (Hermann and Stenzel, 2019)).

Substance
name

CAS n. MoA/site of action

PPDB FRAC Harmonised classification

Tetraconazole 112281-77-3 Systemic with protectant, eradicant and curative properties. Sterol
biosynthesis inhibitor, acts mainly on the vegetative stages of fungi by
blocking the mycelial growth either inside or on the surface of the host
plant.

DMI-fungicides (DeMethylation
Inhibitors) (SBI: Class I).
TARGET: C14-demethylase in
sterol biosynthesis
(erg11/cyp51)

SBI: Class I_C14-demethylase in
sterol biosynthesis (erg11/cyp51)

Spiroxamine 118134-30-8 Systemic with protective, curative and eradicative action. Disrupts
membrane function. Inhibits sterol biosynthesis in membranes.

Amines (“morpholines”) (SBI:
Class II).
TARGET: Δ14-reductase and Δ8
to Δ7-isomerase in sterol
biosynthesis (erg24, erg2)

SBI: Class II_Δ14-reductase and Δ8
to Δ7-isomerase in sterol
biosynthesis (erg24, erg2)
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presented LD50s ≤ 20 μg/bee (Fig. 5 and Table S13). However, such active
substances have nor to date been authorised on the EU market (EU
Pesticide Database, 2019). Interestingly, oryzalin (dinitroaniline herbi-
cide acting as inhibitor of microtubule assembly in weeds; CAS n.
19044-88-3), is currently authorised in some EU countries (ES, FR, IT,
PT) and has its high toxicity in honey bees with LD50= 40.8 μg/bee (Ta-
ble S13). Oryzalin also has LD50 = 32 μg/bee following oral exposure to
honey bees (EFSA, 2010). Similarly, sulfonylurea herbicides such as
nicosulfuron (CAS n. 111991-09-4) acting as inhibitor of acetolactate
synthase (currently authorised in several EU member states) exhibits
moderate contact toxicity towards honey bees (LD50 = 76 μg/bee)
(EFSA, 2008). In contrast, Sterol Biosynthesis Inhibiting (SBI class
I) fungicides such as triazoles and pyrimidine have acute contact LD50

in honey bees ranging from 20 to 69 μg/bee with spiroxamine (SBI
class II; CAS n. 118134-30-8) as the most potent active substance
(LD50 = 4.22 μg/bee).

Overall, our results suggest that, although themajority of active sub-
stances (60%)were classified as insecticides and/or acaricideswithMoA
groups including AChE inhibitors, sodium channel modulators and
nAChR competitive modulators, some herbicides and fungicides
(authorised in the EU) exhibit moderate to high toxicity (LD50 =
0.8–69 μg/bee; Fig. 5) in honey bees. Similarly, high variability in the
acute contact toxicity of PPPs in honey bees is often reported within
the same MoA as shown for insecticides classified under the MoA
AChE inhibitors, “GABA-gated chloride channel blockers”, acaricides as
mitochondrial complex I electron transport inhibitors (METI) (Fig. 5).
However, looking at the size of the database, more toxicity data points
would be needed to allow a more robust statistical analysis of LD50 var-
iability in honey bees.
0

Inhib. acetyl-CoA carboxylase (ACCase)
Inhib. cell wall (cellulose) synthesis

Inhib. of very-long-chain fatty acid synthesis…
Multi-site contact activity

Inhib. lipid synthesis – not ACCase
Inhib. mitosis/microtubule organization

Inhib. acetolactate synthase…
Inhib. microtubule assembly

GABA-gated chloride channel blockers_GABA-R(-)
Nicotinic acetylcholine receptor (nAChR +)

Other
SBI: Class I-II (erg11/cyp51)

Mitochondrial complex I-III
Inhib. photosynthesis at PS II

N/A
Sodium channel modulators_Na channel(+)

Acetylcholinesterase (AChE) inhibitors_AChE(-)

Fig. 4. Percentage of pesticides active substances (n = 113
3.2.3. MoA as tool for grouping chemicals into assessment groups for eco-
logical risk assessment of multiple chemicals

Notwithstanding that several definitions of MoA have been pro-
posed, a range of applications of MoA schemes have also been re-
ported for chemical RA. In the human health area, scientific
advisory bodies such as the US-EPA, the WHO, the OECD and EFSA
have proposed the application of MoA when defining AGs in
component-based approaches for the identification and characteri-
sation of combined toxicity of pesticide active substances as for ex-
ample potential neurotoxicity in the thyroid to set cumulative AGs
(Meek et al., 2011; EFSA PPR, 2013; OECD, 2018; More et al., 2019).
Similarly, MoA can be applied as a grouping tool for ecological and
human-health RA to group chemicals when applying mathematical
models such as concentration addition or independent action for
predicting mixtures toxicity (Kienzler et al., 2016; More et al.,
2019; Carnesecchi et al., 2019a). Furthermore, MoA has been used
to investigate potential pesticide resistance in target organisms (i.e.
field population), thus representing a key-aspect of pest manage-
ment worldwide (Sparks and Nauen, 2015; Hermann and Stenzel,
2019).

In the present manuscript, we provided the first MoA harmonised
classification for pesticide active substances used in PPPs. However, a
broad question remains: can one use MoA information to group
chemicals in the broad context of ecological RA of multiple chemicals?
In order to answer this question, we should clarify that two fundamen-
tal aspects intrinsically characterise a given pesticide active substance:
its toxicity andMoA at target site (i.e. site of action). As in the case of in-
secticides, their toxicity and specificity are a consequence of theMoA at
the cellular or physiological level in the organism (Simon-Delso et al.,
% 10% 20% 30% 40%

) that are classified into each harmonised MoA group.



Fig. 5. Distribution of honey bee acute effects (pLD50 μmol/bee) for 22 different classes of MoA i.e. target site for pesticide active substances (n = 113).
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2015). Similarly, while toxicity is triggered by the internal dose causing
the adverse effect (e.g. death of the organism), the specificity depends
on the key events leading to the adverse outcome as biochemical or
physiological mechanisms targeted by the insecticide in the specie
(s) of interest (Sanchez-Bayo, 2012; Meek et al. 2011). Examples of
how pesticide specificity vary among taxa (as in the case of selective in-
secticides), or are conserved across taxa (e.g. broad-spectrum insecti-
cides) are available in the literature (Sanchez-Bayo, 2012). The author
collected publicly available LD50s of insecticides in honey bees while
reporting avermectins as the most toxic insecticide class (LD50

0.04 μg/bee) N neonicotinoids (typical LD50 0.03–3.6 μg/bee) N pyre-
throids (typical LD50 0.07–1.3 μg/bee). Although our results are in line
with Sanchez-Bayo (2012), we further demonstrated that high variabil-
ity of pesticide toxicity (LD50) among the same MoA group is often re-
ported (Fig. 5). Therefore, in order to reply to the question above, we
suggest that further develop and test the proposed approach for group-
ing using theMoAharmonised classification in bees, while an additional
analysis of the variability of single pesticide toxicity within the same
MoA group (e.g. Sodium channel modulator) to integrate the potency
aspect when prioritising chemicals of concern in component-based ap-
proaches. Nonetheless, besides the intrinsic characteristics of each pes-
ticide active substance (i.e. toxicity and MoA), it is noteworthy that TK-
TD variability and inter-colonies variability also play a key role when
assessing pesticide (hazard) toxicity (Medrzycki et al., 2013; Wang
et al., 2020; Heard et al., 2017; Chmiel et al., 2020).

4. Conclusions

This manuscript has explored the application of EFSA's
OpenFoodTox, the US-EPA ECOTOX database and PPDB to develop the
first integrative honey bee QSAR models i) to predict acute contact tox-
icity (LD50) and ii) to profile the MoA of pesticides active substances.
Here, seven different QSAR models have been developed, tested and
validated for their performance. Twomodelswhich can be applied as in-
tegrative tools according to a specific hierarchical workflow provided
the best predictions:
- A k-NN classification-based model (LD50 ≥ 100 μg/bee (non-toxic)
vs. LD50 b 100 μg/bee (toxic)) which has been validated using statis-
tical parameters i.e. sensitivity (=0.93), specificity (=0.85), accu-
racy (=0.90), and Matthews correlation coefficient (MCC = 0.78);

- A k-NN Regression-based model (LD50 b 100 μg/bee; only continu-
ous data) validated with statistical parameters, which were demon-
strated to be reliable and robust (R2 = 0.72; MAE = 0.52; in
validation test).

These models are currently being implemented within the VEGA-
HUB platform (https://www.vegahub.eu/) and all supplementarymate-
rials will be available open source on EFSA's Knowledge Junction plat-
form (DOI: https://doi.org/10.5281/zenodo.3755675). The authors
acknowledge that k-NN based models present advantages for their im-
plementation, such as qualitative/quantitative predictions based on the
most similar compounds i.e. “neighbor” (Mansouri et al., 2018; ECHA,
2016). Similarly, k-NN models also offer further advantages for the im-
plementation of MoA profiling in VEGA models such as visualization of
the neighbors used to predict the target compound as well as reliability
of the prediction while assessing their known MoA.

Similarly, the current study also proposes the first harmonised
MoA classification scheme for 113 pesticides active substances
(used as insecticides, acaricides, herbicides, fungicides and plant
growth regulator), including potency of the chemicals as acute con-
tact toxicity as LD50s values from three different sources (EFSA's
OpenFoodTox, US-EPA ECOTOX and PPDB). Hence, this exercise
allowed further defining toxicological MoAs and the target site of
PPPs active substances in honey bees, thus enabling regulators and
scientists to refine chemical grouping and toxicity extrapolations
for component-based RA of multiple chemicals (More et al., 2019;
Carnesecchi et al., 2020). In addition, this approach can be of value
for research and development to design new active substances for
which potency in non-target species such as honey bees is known
and controlled, by relying more on the “a priori” knowledge of the

https://www.vegahub.eu/
https://doi.org/10.5281/zenodo.3755675
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pesticide chemical structure and its potential target site
(Commission Regulation, 283/2013, 2013). In a broader context,
this manuscript also highlights how New Approach Methodologies
(NAMs) such as in silico tools can shift RA to a more mechanistically
based understanding of the MoA and mechanism of action of
chemicals, thus reducing traditional in vivo experiments and provid-
ing alternative testing methods.

Finally, many data gaps remain and still limit the development and
broader applications of such QSAR models in honey bees:

- Acute contact toxicity data (e.g. mortality) are the major available
datasets for a significant number of compounds and their mixtures
but acute/chronic toxicity oral data and toxicity data for sub-lethal
effects of pesticides and contaminants in honey bees and wild bees
are still lacking (Carnesecchi et al., 2019a, 2019b, 2020). Hence, fur-
ther work is needed to generate acute and chronic toxicity oral data
and sub-lethal toxicity data as the basis to develop QSAR models to
predict these effects and integrate such quantitative metrics in RA
of single and multiple chemicals (Carnesecchi et al., 2019a; Toma
et al., in preparation).

- Statistical variability for single toxicity tests (e.g. LD50) as well as
sample size are not usually reported in toxicological studies on
bees, thus increasing uncertainty for hazard and RA of chemicals to-
wards non-target organisms (Denton et al., 2003). Such data would
be of value when predicting the toxicity of unknown compounds,
thereby enhancing their reliability.

- Experimental toxicokinetic data (e.g. absorption, distribution, me-
tabolism and excretion including elimination rate, half-life and bio-
accumulation) are also lacking and are an entire part of the MoA of
chemicals. This type of informationwould further support the devel-
opment of ad-hoc QSARmodels to further characterise the impact of
fast elimination or persistence of chemicals on the toxicity of single
substances as well as on combined toxicity of multiple chemicals
in bees (including interactions). Availability of such datasets will
allow the further development of QSAR models combined with bio-
metric and life cycle information to generate the next generation of
Dynamic Energy Budget (DEB)models for honey bees andwild bees.
Finally, since the understanding of single AOPs and their networks is
unfolding and, new tools are being developed to monitor species of
ecological relevance at the landscape level; integration of mechanis-
tic understanding at different levels of biological organization is
foreseen as a mid-term perspective. Ultimately, it will allow risk as-
sessors to tackle toxicity of single chemicals, combined toxicity for
multiple chemicals and the resulting risk for honey bees and wild
bees at the individual, colony, population and landscape level
(Topping et al., 2020; Carnesecchi et al., 2019a, 2020; Baas et al.,
2018; LaLone et al., 2017; Spurgeon et al., 2017; Hesketh et al.,
2016).
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